全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考總復(fù)習(xí) > 高考知識點 > 高考數(shù)學(xué)知識點 > 2019年高考一輪復(fù)習(xí)數(shù)學(xué)專練:導(dǎo)數(shù)性質(zhì)的應(yīng)用

2019年高考一輪復(fù)習(xí)數(shù)學(xué)專練:導(dǎo)數(shù)性質(zhì)的應(yīng)用

來源:網(wǎng)絡(luò)資源 2018-10-19 21:06:37

  導(dǎo)數(shù)性質(zhì)的簡單應(yīng)用及對含參問題的研究

  1.(2017·課標(biāo)全國II卷理)若 是函數(shù) 的極值點,則 的極小值為    。   )

  A.                 B.                C.                    D.1

  2.(2015·天津理)已知函數(shù) ,函數(shù) ,其中 .若函數(shù) 恰有4個零點,則 的取值范圍是(   )

  A.        B.        C.        D.

  3.(2015·山東理)設(shè)函數(shù) 則滿足 的 取值范圍是(   )

  A.           B.           C.          D.

  4. (2016o天津卷文)已知函數(shù) 為 的導(dǎo)函數(shù),則 的值為_______.

  5.(2017·北京理)(本小題13分)

  已知函數(shù)f(x)=excosx?x.

 。á瘢┣笄y= f(x)在點(0,f(0))處的切線方程;

 。á颍┣蠛瘮(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.

  6.(2015o課標(biāo)全國II卷文)(本小題滿分12分)

  已知函數(shù) .

  (I)討論 的單調(diào)性;

  (II)當(dāng) 有最大值,且最大值大于 時,求 的取值范圍.

  7. (2015·山東理)(本小題滿分14分)

  設(shè)函數(shù) ,其中 .

  (I)討論函數(shù) 極值點的個數(shù),并說明理由;

  (II)若 , 成立,求 的取值范圍.

  8.(2015·天津理)(本小題滿分14分)

  已知函數(shù) , ,其中 ,且 .

  (I)討論 的單調(diào)性;

  (II)設(shè)曲線 與 軸正半軸的交點為 ,曲線在點 處的切線方程為 ,求證:對于任意的正實數(shù) ,都有 ;

  (III)若關(guān)于 方程 ( 為實數(shù))有兩個正實數(shù)根 , ,求證: .

  9.(2017·課標(biāo)全國I卷理)(12分)

  已知函數(shù) .

 。1)討論 的單調(diào)性;

  (2)若 有兩個零點,求 的取值范圍.

  10.(2017·課標(biāo)全國I卷文)(12分)

  已知函數(shù) .

 。1)討論 的單調(diào)性;

 。2)若 ,求a的取值范圍.

  導(dǎo)數(shù)性質(zhì)的簡單應(yīng)用及對含參問題的研究答案

  1.(2017·課標(biāo)全國II卷理)若 是函數(shù) 的極值點,則 的極小值為 。   )

  A.                 B.                C.                    D.1

  【答案】A

  【解析】 ,

  則 ,

  則 , ,

  令 ,得 或 ,

  當(dāng) 或 時, ,

  當(dāng) 時, ,

  則 極小值為 .

  2.(2015·天津理)已知函數(shù) ,函數(shù) ,其中 .若函數(shù) 恰有4個零點,則 的取值范圍是(   )

  A.        B.        C.        D.

  【答案】D

  【解析】由題意,知f(2-x)=x,0≤x≤2,4-x,x>2,x2,x<0.g(x)=b-f(2-x)=-x+b,0≤x≤2,x+b-4,x>2,-x2+b,x<0.

  當(dāng)函數(shù)f(x)與g(x)的圖像如圖所示相切時,設(shè)左邊切點為B(x0,y0),

  g ′(x0)=-2x0=1,

  ∴x0=-12,y0=32.

  ∴32=--122+b,

  b=74,即當(dāng)b=74時,f(x)與g(x)的圖像有兩個交點,g(x)的圖像必須還要向上平移,但g(x)圖像向上平移不能超過點A,所以74<b<2.

  【點評】關(guān)鍵點撥:求解本題先由f(x)的解析式求出g(x)的解析式,再根據(jù)解析式結(jié)構(gòu)選擇適當(dāng)?shù)姆椒ㄗ鞒龊瘮?shù)的圖像,進而應(yīng)用圖像求解b的取值范圍.

  刷有所得:(1)根據(jù)分段函數(shù)確定另一個函數(shù)解析式要注意代入時自變量取值范圍滿足各段函數(shù)的定義域,如本題可先確定2-x的取值范圍,再分別代入,從而確定函數(shù)g(x)的解析式,亦可根據(jù)圖像變換由f(x)畫出-f(2-x)的圖像,上下平移b個單位得到g(x)圖像.(2)y=f(x)-g(x)有零點可以轉(zhuǎn)化為f(x)與g(x)的函數(shù)圖像有交點.(3)解決曲線與直線交點問題可借助導(dǎo)數(shù)幾何意義求解.

  測訓(xùn)診斷:本題難度較大,主要考查已知函數(shù)有零點求參數(shù)取值范圍,分段函數(shù)圖像變換與導(dǎo)數(shù)的綜合,意在考查學(xué)生分類討論思想、數(shù)形結(jié)合解題思想和畫圖能力,學(xué)生失分較多.

  3.(2015·山東理)設(shè)函數(shù) 則滿足 的 取值范圍是(   )

  A.           B.           C.          D.  【答案】C

  【解析】f(x)=3x-1,x<1,2x,x≥1.

  (1)當(dāng)a≥1時,f(a)=2a>1,f[f(a)]= ,又2f(a)= ,∴f[f(a)]=2f(a)符合題意;

  (2)當(dāng)a<1時,f(a)=3a-1.

  ①若3a-1≥1,即23≤a<1,f[f(a)]=23a-1,而2f(a)=23a-1,故f[f(a)]=2f(a)符合題意;

  ②若3a-1<1,即a<23, f[f(a)]=3(3a-1)-1=9a-4,而2f(a)=23a-1=12·8a.

  令h(a)=2f(a)-f[f(a)]=12·8a-9a+4a∈-∞,23.

  則h′(a)=12·8a·ln 8-9.

  ∵a<23,∴8a<4,∴h′(a)<0,即y=h(a)在-∞,23上單調(diào)遞減,h(a)>h23=0,即當(dāng)a<23時,方程f[f(a)]=2f(a)無解.

  綜上a≥23,故選C.

  【點評】測訓(xùn)診斷:本題難度較大,主要考查函數(shù)與方程思想、分類與整合的思想.

  關(guān)鍵點撥:確定f(a)的范圍是解方程的關(guān)鍵,故首先對a討論,得到f(a)的范圍,從而將復(fù)雜的方程化為簡單方程,當(dāng)a<23時,原方程的解轉(zhuǎn)化求函數(shù)h(a)的零點問題,利用導(dǎo)數(shù)研究函數(shù)h(a)的單調(diào)性,進而解決.

  4. (2016o天津卷文)已知函數(shù) 為 的導(dǎo)函數(shù),則 的值為_______.

  【答案】3

  【解析】因為f ′(x)=(2x+3)ex,所以f ′(0)=3.

  【點評】測訓(xùn)診斷:(1)本題難度易,主要考查導(dǎo)數(shù)的運算,考查學(xué)生的運算求解能力,意在讓學(xué)生得分.(2)本題若出錯,主要是求導(dǎo)法則應(yīng)用錯誤.

  5.(2017·北京理)(本小題13分)

  已知函數(shù)f(x)=excosx?x.

 。á瘢┣笄y= f(x)在點(0,f(0))處的切線方程;

 。á颍┣蠛瘮(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.
 

收藏

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 giftsz.cn . All Rights Reserved