高三數(shù)學(xué)教案:三角函數(shù)四
來源:網(wǎng)絡(luò)整理 2024-12-08 20:56:40
高三這年,其重要性,是不言而喻的。高考網(wǎng)陸續(xù)的整理了一些全國各省市優(yōu)秀教案供廣大考生參考。
一、案例實(shí)施背景
本節(jié)課是九年級解直角三角形講完后的一節(jié)復(fù)習(xí)課
二、本章的課標(biāo)要求:
1、通過實(shí)例銳角三角函數(shù)(sinA、cosA、tanA)
2、知道特殊角的三角函數(shù)值
3、會使用計算器由已知銳角求它的三角函數(shù)值,已知三角函數(shù)值求它對應(yīng)的銳角
4、能運(yùn)用三角函數(shù)解決與直角三角形有關(guān)的簡單實(shí)際問題
此外,理解直角三角形中邊、角之間的關(guān)系會運(yùn)用勾股定理、直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形,進(jìn)一步感受數(shù)形結(jié)合的數(shù)學(xué)思想方法,通過對實(shí)際問題的思考、探索,提高解決實(shí)際問題的能力和應(yīng)用數(shù)學(xué)的意識。
三、課時安排:
1課時
四、學(xué)情分析:
本節(jié)是在學(xué)完本章的前提之下進(jìn)行的總復(fù)習(xí),因此本節(jié)選取三個知識回顧和四個例題,使學(xué)生將有關(guān)銳角三角函數(shù)基礎(chǔ)知識條理化,系統(tǒng)化,進(jìn)一步培養(yǎng)學(xué)生總結(jié)歸納的能力和運(yùn)用知識的能力.
因此,本節(jié)的重點(diǎn)是通過復(fù)習(xí),使學(xué)生進(jìn)一步體會知識之間的相互聯(lián)系,能夠很好地運(yùn)用知識.進(jìn)一步體會三角函數(shù)在解決實(shí)際問題中的作用,從而發(fā)展數(shù)學(xué)的應(yīng)用意識和解決問題的能力.
五、教學(xué)目標(biāo):
知識與技能目標(biāo)
1、通過復(fù)習(xí)使學(xué)生將有關(guān)銳角三角函數(shù)基礎(chǔ)知識條理化,系統(tǒng)化.
2、通過復(fù)習(xí)培養(yǎng)學(xué)生總結(jié)歸納的能力和運(yùn)用知識的能力.
過程與方法:
1、通過本節(jié)課的復(fù)習(xí),使學(xué)生進(jìn)一步體會知識之間的相互聯(lián)系,能夠很好地運(yùn)用知識.
2、通過復(fù)習(xí)銳角三角函數(shù),進(jìn)一步體會它在解決實(shí)際問題中的作用.
情感、態(tài)度、價值觀
充分發(fā)揮學(xué)生的積極性,讓學(xué)生從實(shí)際運(yùn)用中得到鍛煉和發(fā)展.
六、重點(diǎn)難點(diǎn):
1.重點(diǎn):銳角三角函數(shù)的定義;直角三角形中五個元素之間的相互聯(lián)系.
2.難點(diǎn):知識的深化與運(yùn)用.
七、教學(xué)過程:
知識回顧一:
(1) 在Rt△ABC中,C=90, AB=6,AC=3,則BC=_________,sinA=_________,cosA=______,tanA=______, A=_______, B=________.
知識回顧二:
(2) 比較大。 sin50______sin70
cos50______cos70
tan50______tan70.
知識回顧三:
(3)若A為銳角,且cos(A+15)= ,則A=________.
本環(huán)節(jié)的設(shè)計意圖:通過三個小題目回顧:
1、銳角三角函數(shù)的定義:
在Rt△ABC中,C=90
銳角A的正弦、余弦、和正切統(tǒng)稱A的銳角三角函數(shù)。
2、直角三角形的邊角關(guān)系:
(1)三邊之間的關(guān)系: .
(2)銳角之間的關(guān)系:B=90
(3)邊角之間的關(guān)系:
sinA= cosA= tanA= sinB= cosB= tanB=
3、解直角三角形:
由直角三角形中的已知元素,求出所有未知元素的過程,叫做解直角三角形。
4、特殊角的三角函數(shù)值
三角函數(shù)
銳角A
sin A
cos A
tan A
30
45
60
5、銳角三角函數(shù)值的變化:
(1)當(dāng)A為銳角時,各三角函數(shù)值均為正數(shù), 且0
(2)當(dāng)A為銳角時,sinA、tanA隨角度的增大而增大,cosA隨角度的增大而減小.
例題解析
【例1】在⊿ABC中,AD是BC邊上的高,E是AC的中點(diǎn),BC=14,AD=12,sinB=0.8,求DC及tanCDE。
解題反思:通過本題讓學(xué)生明白:
1、必須在直角三角形中求銳角的三角函數(shù);
2、等角代換間接求解.
【例2】要在寬為28m的海堤公路的路邊安裝路燈,路燈的燈臂AD長3m,且與燈柱CD成120角,路燈采用圓錐形燈罩,燈罩的'軸線AB與燈臂垂直,當(dāng)燈罩的軸線通過公路路面的.中線時,照明效果最理想,問:應(yīng)設(shè)計多高的燈柱,才能取得最理想的照明效果?
解題反思:通過本題讓學(xué)生知道解決這類問題時常分為以下幾個步驟:
①理清題目所給信息條件和需要解決的問題;
、谕ㄟ^畫圖進(jìn)行分析,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題;
、鄹鶕(jù)直角三角形的邊角關(guān)系尋找解決問題的方法;
、苷_進(jìn)行計算,寫出答案。
【例3】一艘輪船以每小時30海里的速度向東北方向航行,當(dāng)輪船在A處時,從輪船上觀察燈塔S,燈塔S在輪船的北偏東75方向,航行12分鐘后,輪船到達(dá)B處,在B處觀察燈塔S,S恰好在輪船的正東方向,已知距離燈塔S8海里以外的海區(qū)為航行安全區(qū)域,問:如果這艘輪船繼續(xù)沿東北方向航行,它是否安全?
解題反思:解決這類問題時常用的模型:
小結(jié):
P93 例3
P94 檢測評估
教學(xué)反思:
銳角三角函數(shù)在解決現(xiàn)實(shí)問題中有著重要的作用,但是銳角三角函數(shù)首先是放在直角三角形中研究的,顯示的是邊角之間的關(guān)系。銳角三角函數(shù)值是邊與邊之間的比值,銳角三角函數(shù)溝通了邊與角之間的聯(lián)系,它是解直角三角形最有力的工具之一。
在今后教學(xué)過程中,自己還要多注意以下兩點(diǎn):
(1)還要多下點(diǎn)工夫在如何調(diào)動課堂氣氛,使語言和教態(tài)更加生動上。初中學(xué)生的注意力還是比較容易分散的,興趣也比較容易轉(zhuǎn)移,因此,越是生動形象的語言,越是寬松活潑的氣氛,越容易被他們接受。如何找到適合自己適合學(xué)生的教學(xué)風(fēng)格?或嚴(yán)謹(jǐn)有序,或生動活潑,或詼諧幽默,或詩情畫意,或春風(fēng)細(xì)雨潤物細(xì)無聲,或激情飛揚(yáng),每一種都是教學(xué)魅力和人格魅力的展現(xiàn)。我將不斷摸索,不斷實(shí)踐。
(2)我將盡我可能站在學(xué)生的角度上思考問題,設(shè)計好教學(xué)的每一個細(xì)節(jié),上課前多揣摩。讓學(xué)生更多地參與到課堂的教學(xué)過程中,讓學(xué)生體驗(yàn)思考的過程,體驗(yàn)成功的喜悅和失敗的挫折,舍得把課堂讓給學(xué)生,讓學(xué)生做課堂這個小小舞臺的主角。而我將盡我最大可能在課堂上投入更多的情感因素,豐富課堂語言,使課堂更加鮮活,充滿人性魅力,下課后多反思,做好反饋工作,不斷總結(jié)得失,不斷進(jìn)步。只有這樣,才能真正提高課堂教學(xué)效率。
相關(guān)推薦:
高三數(shù)學(xué)一輪復(fù)習(xí)教案:《集合及其基本運(yùn)算》
最新高考資訊、高考政策、考前準(zhǔn)備、志愿填報、錄取分?jǐn)?shù)線等
高考時間線的全部重要節(jié)點(diǎn)
盡在"高考網(wǎng)"微信公眾號
相關(guān)推薦
高考院校庫(挑大學(xué)·選專業(yè),一步到位。
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢