高三數(shù)學(xué)教案:三角函數(shù)三
來源:網(wǎng)絡(luò)整理 2024-12-08 20:56:13
高三這年,其重要性,是不言而喻的。高考網(wǎng)陸續(xù)的整理了一些全國各省市優(yōu)秀教案供廣大考生參考。
一、銳角三角函數(shù)
正弦和余弦
第一課時(shí):正弦和余弦(1)
教學(xué)目的
1,使學(xué)生了解本章所要解決的新問題是:已知直角三角形的一條邊和另一個(gè)元素(一邊或一銳角),求這個(gè)直角三角形的其他元素。
2,使學(xué)生了解“在直角三角形中,當(dāng)銳角A取固定值時(shí),它的對邊與斜邊的比值也是一個(gè)固定值。
重點(diǎn)、難點(diǎn)、關(guān)鍵
1,重點(diǎn):正弦的概念。
2,難點(diǎn):正弦的概念。
3,關(guān)鍵:相似三角形對應(yīng)邊成比例的性質(zhì)。
教學(xué)過程
一、復(fù)習(xí)提問
1、什么叫直角三角形?
2、如果直角三角形ABC中∠C為直角,它的直角邊是什么?斜邊是什么?這個(gè)直角三角形可用什么記號來表示?
二、新授
1、讓學(xué)生閱讀教科書第一頁上的插圖和引例,然后回答問題:
(1)這個(gè)有關(guān)測量的實(shí)際問題有什么特點(diǎn)?(有一個(gè)重要的.測量點(diǎn)不可能到達(dá))
。2)把這個(gè)實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型后,其圖形是什么圖形?(直角三角形)
(3)顯然本例不能用勾股定理求解,那么能不能根據(jù)已知條件,在地面上或紙上畫出另一個(gè)與它全等的直角三角形,并在這個(gè)全等圖形上進(jìn)行測量?(不一定能,因?yàn)樾边吋此艿拈L度是一個(gè)較大的數(shù)值,這樣做就需要較大面積的平地或紙張,再說畫圖也不方便。)
。4)這個(gè)實(shí)際問題可歸結(jié)為怎樣的數(shù)學(xué)問題?(在Rt△ABC中,已知銳角A和斜邊求∠A的對邊BC。)
但由于∠A不一定是特殊角,難以運(yùn)用學(xué)過的定理來證明BC的長度,因此考慮能否通過式子變形和計(jì)算來求得BC的值。
2、在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的對邊與斜邊的比值都等于1/2,根據(jù)這個(gè)比值,已知斜邊AB的長,就能算出∠A的對邊BC的長。
類似地,在所有等腰的那塊三角尺中,由勾股定理可得∠A的對邊/斜邊=BC/AB=BC/=1/=/2 這就是說,當(dāng)∠A=450時(shí),∠A的對邊與斜邊的比值等于/2,根據(jù)這個(gè)比值,已知斜邊AB的長,就能算出∠A的對邊BC的長。
那么,當(dāng)銳角A取其他固定值時(shí),∠A的對邊與斜邊的比值能否也是一個(gè)固定值呢?
。ㄒ龑(dǎo)學(xué)生回答;在這些直角三角形中,∠A的對邊與斜邊的比值仍是一個(gè)固定值。)
三、鞏固練習(xí):
在△ABC中,∠C為直角。
1、如果∠A=600,那么∠B的對邊與斜邊的比值是多少?
2、如果∠A=600,那么∠A的對邊與斜邊的比值是多少?
3、如果∠A=300,那么∠B的對邊與斜邊的比值是多少?
4、如果∠A=450,那么∠B的對邊與斜邊的比值是多少?
四、小結(jié)
五、作業(yè)
1、復(fù)習(xí)教科書第1-3頁的全部內(nèi)容。
2、選用課時(shí)作業(yè)設(shè)計(jì)。
相關(guān)推薦:
高三數(shù)學(xué)一輪復(fù)習(xí)教案:《集合及其基本運(yùn)算》
最新高考資訊、高考政策、考前準(zhǔn)備、志愿填報(bào)、錄取分?jǐn)?shù)線等
高考時(shí)間線的全部重要節(jié)點(diǎn)
盡在"高考網(wǎng)"微信公眾號
相關(guān)推薦
高考院校庫(挑大學(xué)·選專業(yè),一步到位!)
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢