高中數(shù)學(xué)必修五,圓的方程思維導(dǎo)圖知識(shí)點(diǎn)
2019-01-14 19:22:42三好網(wǎng)
。ㄒ唬﹫A的標(biāo)準(zhǔn)方程
1.圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡叫做圓.定點(diǎn)叫圓的圓心,定長(zhǎng)叫做圓的半徑.
2.圓的標(biāo)準(zhǔn)方程:已知圓心為(a,b),半徑為r,則圓的方程為(x-a)2+(y-b)2=r2.
說(shuō)明:
(1)上式稱(chēng)為圓的標(biāo)準(zhǔn)方程.
(2)如果圓心在坐標(biāo)原點(diǎn),這時(shí)a=0,b=0,圓的方程就是x2+y2=r2.
。3)圓的標(biāo)準(zhǔn)方程顯示了圓心為(a,b),半徑為r這一幾何性質(zhì),即(x-a)2+(y-b)2=r2----圓心為(a,b),半徑為r.
。4)確定圓的條件
由圓的標(biāo)準(zhǔn)方程知有三個(gè)參數(shù)a、b、r,只要求出a、b、r,這時(shí)圓的方程就被確定.因此,確定圓的方程,需三個(gè)獨(dú)立的條件,其中圓心是圓的定位條件,半徑是圓的定型條件.
。5)點(diǎn)與圓的位置關(guān)系的判定
若點(diǎn)M(x1,y1)在圓外,則點(diǎn)到圓心的距離大于圓的半徑,即(x-a)2+(y-b)2>r2;
若點(diǎn)M(x1,y1)在圓內(nèi),則點(diǎn)到圓心的距離小于圓的半徑,即(x-a)2+(y-b)2<r2;
。ǘ﹫A的一般方程
任何一個(gè)圓的方程都可以寫(xiě)成下面的形式:
x2+y2+Dx+Ey+F=0①
將①配方得:
、(x+D/2)2+(y+E/2)2=D2+E2-4F/4
當(dāng)時(shí),方程①表示以(-D/2,-E/2)為圓心,以為半徑的圓;
當(dāng)時(shí),方程①只有實(shí)數(shù)解,所以表示一個(gè)點(diǎn)(-D/2,-E/2);
當(dāng)時(shí),方程①?zèng)]有實(shí)數(shù)解,因此它不表示任何圖形.
故當(dāng)時(shí),方程①表示一個(gè)圓,方程①叫做圓的一般方程.
圓的標(biāo)準(zhǔn)方程的優(yōu)點(diǎn)在于它明確地指出了圓心和半徑,而一般方程突出了方程形式上的特點(diǎn):
。1)和的系數(shù)相同,且不等于0;
。2)沒(méi)有xy這樣的二次項(xiàng).
以上兩點(diǎn)是二元二次方程表示圓的必要條件,但不是充分條件.
要求出圓的一般方程,只要求出三個(gè)系數(shù)D、E、F就可以了.
。ㄈ┲本和圓的位置關(guān)系
1.直線與圓的位置關(guān)系
研究直線與圓的位置關(guān)系有兩種方法:
。╨)幾何法:令圓心到直線的距離為d,圓的半徑為r.
d>r直線與圓相離;d=r直線與圓相切;0≤d