高二數(shù)學(xué)教案:《平面向量的坐標(biāo)表示》教學(xué)設(shè)計(jì)
來源:網(wǎng)絡(luò)整理 2018-11-21 16:24:47
高二數(shù)學(xué)教案:《平面向量的坐標(biāo)表示》教學(xué)設(shè)計(jì)
一、學(xué)情分析
本節(jié)課是在學(xué)生已學(xué)知識的基礎(chǔ)上進(jìn)行展開學(xué)習(xí)的,也是對以前所學(xué)知識的鞏固和發(fā)展,但對學(xué)生的知識準(zhǔn)備情況來看,學(xué)生對相關(guān)基礎(chǔ)知識掌握情況是很好,所以在復(fù)習(xí)時(shí)要及時(shí)對學(xué)生相關(guān)知識進(jìn)行提問,然后開展對本節(jié)課的鞏固性復(fù)習(xí)。而本節(jié)課學(xué)生會遇到的困難有:數(shù)軸、坐標(biāo)的表示;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算。
二、考綱要求
1.會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算.
2.理解用坐標(biāo)表示的平面向量共線的條件.
3.掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量數(shù)量積的運(yùn)算.
4.能用坐標(biāo)表示兩個(gè)向量的夾角,理解用坐標(biāo)表示的平面向量垂直的條件.
三、教學(xué)過程
(一) 知識梳理:
1.向量坐標(biāo)的求法
(1)若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo).
(2)設(shè)A(x1,y1),B(x2,y2),則
。絖________________
| |=_______________
(二)平面向量坐標(biāo)運(yùn)算
1.向量加法、減法、數(shù)乘向量
設(shè) =(x1,y1), =(x2,y2),則
+ = - = λ = .
2.向量平行的坐標(biāo)表示
設(shè) =(x1,y1), =(x2,y2),則 ∥ ?________________.
。ㄈ┖诵目键c(diǎn)·習(xí)題演練
考點(diǎn)1.平面向量的坐標(biāo)運(yùn)算
例1.已知A(-2,4),B(3,-1),C(-3,-4).設(shè) (1)求3 + -3 ;
(2)求滿足 =m +n 的實(shí)數(shù)m,n;
練:(2015江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),則m-n的值為 .
考點(diǎn)2平面向量共線的坐標(biāo)表示
例2:平面內(nèi)給定三個(gè)向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求實(shí)數(shù)k的值;
練:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實(shí)數(shù),( +λ )∥ ,則λ= ( )
思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?
方法總結(jié):
1.向量共線的兩種表示形式
設(shè)a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應(yīng)視題目的具體條件而定,一般情況涉及坐標(biāo)的應(yīng)用②.
2.兩向量共線的充要條件的作用
判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值.
考點(diǎn)3平面向量數(shù)量積的坐標(biāo)運(yùn)算
例3“已知正方形ABCD的邊長為1,點(diǎn)E是AB邊上的動點(diǎn),
則 的值為 ; 的最大值為 .
【提示】解決涉及幾何圖形的向量數(shù)量積運(yùn)算問題時(shí),可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來運(yùn)算,這樣可以使數(shù)量積的運(yùn)算變得簡捷.
練:(2014,安徽,13)設(shè) =(1,2)
, =(1,1), = +k .若 ⊥ ,則實(shí)數(shù)k的值等于( )
【思考】兩非零向量 ⊥ 的充要條件: · =0? .
解題心得:
(1)當(dāng)已知向量的坐標(biāo)時(shí),可利用坐標(biāo)法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.
(2)解決涉及幾何圖形的向量數(shù)量積運(yùn)算問題時(shí),可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來運(yùn)算,這樣可以使數(shù)量積的運(yùn)算變得簡捷.
(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.
考點(diǎn)4:平面向量模的坐標(biāo)表示
例4:(2015湖南,理8)已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動,且AB⊥BC,若點(diǎn)P的坐標(biāo)為(2,0),則 的最大值為( )
A.6 B.7 C.8 D.9
練:(2016,上海,12)
在平面直角坐標(biāo)系中,已知A(1,0),B(0,-1),P是曲線上一個(gè)動點(diǎn),則 的取值范圍是?
解題心得:
求向量的模的方法:
(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運(yùn)算轉(zhuǎn)化為數(shù)量積運(yùn)算;
(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..
相關(guān)推薦
- 高二數(shù)學(xué)教案:《算法的概念》教學(xué)設(shè)計(jì)
- 高二數(shù)學(xué)教案:《函數(shù)的極值與導(dǎo)數(shù)》教
- 高二數(shù)學(xué)教案:《導(dǎo)數(shù)的幾何意義》教學(xué)
- 高二數(shù)學(xué)教案:《等比數(shù)列》教學(xué)設(shè)計(jì)(
- 高二數(shù)學(xué)教案:《等比數(shù)列》教學(xué)設(shè)計(jì)(
- 高二數(shù)學(xué)教案:《等差數(shù)列的前n項(xiàng)和》
- 高二數(shù)學(xué)教案:《等差數(shù)列的前n項(xiàng)和》
- 高二數(shù)學(xué)教案:《等差列數(shù)》教學(xué)設(shè)計(jì)(
- 高二數(shù)學(xué)教案:《等差列數(shù)》教學(xué)設(shè)計(jì)(
- 高二數(shù)學(xué)教案:《數(shù)列的概念與簡單表示
高考院校庫(挑大學(xué)·選專業(yè),一步到位!)
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢