順口溜+知識點速記口訣,高考數(shù)學(xué)高頻考點手到擒來!
2018-11-06 22:01:10學(xué)科網(wǎng)
函數(shù)學(xué)習(xí)口訣
正比例函數(shù)是直線,圖象一定過原點,
k的正負是關(guān)鍵,決定直線的象限,
負k經(jīng)過二四限,x增大y在減,
上下平移k不變,由引得到一次線,
向上加b向下減,圖象經(jīng)過三個限,
兩點決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線,待定只需一個點,
正k落在一三限,x增大y在減,
圖象上面任意點,矩形面積都不變,
對稱軸是角分線,x、y的順序可交換。
二次函數(shù)拋物線,選定需要三個點,
a的正負開口判,c的大小y軸看,
△的符號最簡便,x軸上數(shù)交點,
a、b同號軸左邊,拋物線平移a不變,
頂點牽著圖象轉(zhuǎn),三種形式可變換,
配方法作用最關(guān)鍵。
正多邊形訣竅歌
份相等分割圓,n值必須大于三,
依次連接各分點,內(nèi)接正n邊形在眼前。
經(jīng)過分點做切線,切線相交n個點。
n個交點做頂點,外切正n邊形便出現(xiàn)。
正n邊形很美觀,它有內(nèi)接、外切圓,
內(nèi)接、外切都唯一,兩圓還是同心圓,
它的圖形軸對稱,n條對稱軸 都過圓心點,
如果n值為偶數(shù),中心對稱很方便。
正n邊形做計算,邊心距、半徑是關(guān)鍵,
內(nèi)切、外接圓半徑,邊心距、半徑分別換,
分成直角三角形2n個整,依此計算便簡單。
圓中比例線段
遇等積,改等比,橫找豎找定相似;
不相似,別生氣,等線等比來代替,
遇等比,改等積,引用射影和圓冪,
平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。
函數(shù)與數(shù)列
數(shù)列函數(shù)子母胎,等差等比自成排。
數(shù)列求和幾多法?通項遞推思路開;
變量分離無好壞,函數(shù)復(fù)合有內(nèi)外。
同增異減定單調(diào),區(qū)間挖隱最值來。
二項式定理
二項乘方知多少,萬里源頭通項找;
展開三定項指系,組合系數(shù)楊輝角。
整除證明底變妙,二項求和特值巧;
兩端對稱誰最大?主峰一覽眾山小。
立體幾何
多點共線兩面交,多線共面一法巧;
空間三垂優(yōu)弦大,球面兩點劣弧小。
線線關(guān)系線面找,面面成角線線表;
等積轉(zhuǎn)化連射影,能割善補架通橋。
方程與不等式
函數(shù)方程不等根,常使參數(shù)范圍生;
一正二定三相等,均值定理最值成。
參數(shù)不定比大小,兩式不同三法證;
等與不等無絕對,變量分離方有恒。
根據(jù)多年的實踐,總結(jié)規(guī)律繁化簡;
概括知識難變易,高中數(shù)學(xué)巧記憶。
言簡意賅易上口,結(jié)合課本勝一籌。
始生之物形必丑,拋磚引得白玉出。
速記口訣
一、《集合與函數(shù)》
內(nèi)容子交并補集,還有冪指對函數(shù)。
性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,
若要詳細證明它,還須將那定義抓。
指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。
底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,
偶次方根須非負,零和負數(shù)無對數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;
其余函數(shù)實數(shù)集,多種情況求交集。
兩個互為反函數(shù),單調(diào)性質(zhì)都相同;
圖象互為軸對稱,Y=X是對稱軸;
求解非常有規(guī)律,反解換元定義域;
反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);
函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);
圖象第一象限內(nèi),函數(shù)增減看正負。
二、《三角函數(shù)》
三角函數(shù)是函數(shù),象限符號坐標注。
函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡證明都需要。
正六邊形頂點處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點三角形;
向下三角平方和,倒數(shù)關(guān)系是對角,
頂點任意一函數(shù),等于后面兩根除。
誘導(dǎo)公式就是好,負化正后大化小,
變成稅角好查表,化簡證明少不了。
二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號原來函數(shù)判。
兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。
和差化積須同名,互余角度變名稱。
計算證明角先行,注意結(jié)構(gòu)函數(shù)名,
保持基本量不變,繁難向著簡易變。
逆反原則作指導(dǎo),升冪降次和差積。
條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。
公式順用和逆用,變形運用加巧用;
1加余弦想余弦,1減余弦想正弦,
冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實質(zhì)就是求角度,
先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,
簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數(shù)的性質(zhì)。
對指無理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價。
數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實數(shù)性質(zhì)威力大。
求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。
非負常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。
圖形函數(shù)來幫助,畫圖建模構(gòu)造法。
四、《數(shù)列》
等差等比兩數(shù)列,通項公式N項和。
兩個有限求極限,四則運算順序換。
數(shù)列問題多變幻,方程化歸整體算。
數(shù)列求和比較難,錯位相消巧轉(zhuǎn)換,
取長補短高斯法,裂項求和公式算。
歸納思想非常好,編個程序好思考:
一算二看三聯(lián)想,猜測證明不可少。
還有數(shù)學(xué)歸納法,證明步驟程序化:
首先驗證再假定,從K向著K加1,
推論過程須詳盡,歸納原理來肯定。
五、《復(fù)數(shù)》
虛數(shù)單位i一出,數(shù)集擴大到復(fù)數(shù)。
一個復(fù)數(shù)一對數(shù),橫縱坐標實虛部。
對應(yīng)復(fù)平面上點,原點與它連成箭。
箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數(shù)形來結(jié)合。
代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運算的實質(zhì),有i多項式運算。
。榈恼麛(shù)次慕,四個數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。
虛實互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。
幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,
逆向順向做旋轉(zhuǎn),伸縮全年模長短。
三角形式的運算,須將輻角和模辨。
利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。
四條性質(zhì)離不得,相等和模與共軛,
兩個不會為實數(shù),比較大小要不得。
復(fù)數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。
六、排列、組合、二項式定理
加法乘法兩原理,貫穿始終的法則。
與序無關(guān)是組合,要求有序是排列。
兩個公式兩性質(zhì),兩種思想和方法。
歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。
排列組合在一起,先選后排是常理。
特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。
排列組合恒等式,定義證明建模試。
關(guān)于二項式定理,中國楊輝三角形。
兩條性質(zhì)兩公式,函數(shù)賦值變換式。
七、《立體幾何》
點線面三位一體,柱錐臺球為代表。
距離都從點出發(fā),角度皆為線線成。
垂直平行是重點,證明須弄清概念。
線線線面和面面、三對之間循環(huán)現(xiàn)。
方程思想整體求,化歸意識動割補。
計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。
射影概念很重要,對于解題最關(guān)鍵。
異面直線二面角,體積射影公式活。
公理性質(zhì)三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,
參數(shù)方程極坐標,數(shù)形結(jié)合稱典范。
笛卡爾的觀點對,點和有序?qū)崝?shù)對,
兩者—一來對應(yīng),開創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;
都說待定系數(shù)法,實為方程組思想。
三種類型集大成,畫出曲線求方程,
給了方程作曲線,曲線位置關(guān)系判。
四件工具是法寶,坐標思想?yún)?shù)好;
平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。
解析幾何是幾何,得意忘形學(xué)不活。
圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。