高考數(shù)學如何復習? 4大搶分技巧
2018-10-26 21:23:38學科網(wǎng)
高考數(shù)學四大搶分技巧
1.套——常規(guī)模式直接套
拿到一道高考題,你的第一反應(yīng)是什么?迅速生成常規(guī)方案,也即第一方案。為什么要有套路,因為80%的高考題是基本的、穩(wěn)定的,考查運算的敏捷性,沒有套路,就沒有速度。
在理解題意后,立即思考問題屬于哪一學科、哪一章節(jié)?與這一章節(jié)的哪個類型比較接近?解決這個類型有哪些方法?哪個方法可以首先拿來試用?這樣一想,下手的地方就有了,前進的方向也大體確定了。這就是高考解題中的模式識別。
運用模式識別可以簡捷回答解題中的兩個基本問題,從何處下手?向何方前進?我們說,就從辨認題型模式入手,就向著提取相應(yīng)方法、使用相應(yīng)方法解題的方向前進。
對高考解題來說,“模式識別”就是將新的高考考試題化歸為已經(jīng)解決的題。有兩個具體的途徑:
、倩瘹w為課堂上已經(jīng)解過的題
理由1:因為課堂和課本是學生知識資源的基本來源,也是學生解題體驗的主要引導。離開了課堂和課本,學生還能從哪里找到解題依據(jù)、解題方法、解題體驗?還能從哪里找到解題靈感的撞針?高考解題一定要抓住“課堂和課本”這個根本。
理由2:因為課本是高考命題的基本依據(jù)。有的試題直接取自教材,或為原題,或為類題;有的試題是課本概念、例題、習題的改編;有的試題是教材中的幾個題目、幾種方法的串聯(lián)、并聯(lián)、綜合與開拓;少量難題也是按照課本內(nèi)容設(shè)計的,在綜合性、靈活性上提出較高要求。按照高考怎樣出題來處理高考怎樣解題應(yīng)是順理成章的。
、诨瘹w為往年的高考題。
2.靠——陌生題目往熟靠
遇到稍新、稍難一點的題目,可能不直接屬于某個基本模式,但將條件或結(jié)論作變形后就屬于基本模式。
當實施第一方案遇到障礙時,我們的策略是什么?轉(zhuǎn)換視角,生成第二方案。
轉(zhuǎn)換視角,轉(zhuǎn)換到哪里?轉(zhuǎn)換到知識豐富域,也就是說把問題轉(zhuǎn)換到我們最熟悉的領(lǐng)域。這就包括:
(1)把一個領(lǐng)域中的問題,用另一個領(lǐng)域中的方法解決。
(2)換一種說法。
3.繞——正難則反迂回繞
高考是智慧的較量,尤其是面對困境如何擺脫的智慧,F(xiàn)在的高考必然出現(xiàn)“生題”“新題”,對此考生可能一時無法把握,使思考困頓,解題停頓。這些戰(zhàn)略高地以單一的方式一味死攻并非上策,要學會從側(cè)翼進攻,要有“戰(zhàn)略迂回”的意識,從側(cè)面或反面的某個點突破,采取類似“管涌”的方式擴大戰(zhàn)果可能更好。“正難則反”是一個重要的解題策略,順向推有困難時就逆向推,直接證有困難時就間接證,從左邊推右邊有困難時就從右邊推左邊。
“人生能有幾回搏”,考場如人生,不如意事常有,關(guān)鍵不是無原則的放棄,也不是兩敗俱傷的死撐,我們要學會“迂回”,要善于走到事物的側(cè)面,甚至反面去看看,也許會出現(xiàn)“風景這邊獨好”的喜人景象。
4.冒——猜測探路將險冒
在常規(guī)思路無能為力,需要預測,需要直覺、估算、轉(zhuǎn)換視角、合情推理等思維方式,除了需要綜合我們在基本點、交匯點上的經(jīng)驗外,主要不是抽象,而是直觀;主要不是邏輯推理,而是合情推理;主要不是知識,而是常識;主要不是我們通過大量訓練獲知的規(guī)律,而是數(shù)學活動的經(jīng)驗。因為演繹推理能力是驗證結(jié)果的能力,而直觀能力是預測結(jié)果的能力。沒有預測,我們驗證什么。因此問題的關(guān)鍵是,尋求一種辦法,讓問題在“直觀上變得顯然起來”,這是德國數(shù)學家C。F,克萊因給我們的教誨。
從上面的分析中我們可以看到,在高考中要能取得優(yōu)異的成績,根據(jù)試題的類型選擇適當?shù)乃季S策略猶為重要。
我們研究解題的思路與策略,在于形成解題方案。值得注意的是,方案形成后,還有一個重要問題是我們不能忽略的。就是:我們是否具備實現(xiàn)方案的能力?不只是思想,還要實踐。
運算的準確性、邏輯的嚴謹性和表達的規(guī)范性是需要在實踐中獲得的,由策略水平到技能水平。沒有策略不行,沒有策略思想,就只能停留在套路化的水平,策略是我們解題的哲學思想。但光有策略水平,沒有技能水平也不行,那是坐而論道,紙上談兵,我們不僅需要思路上的清晰,還需要算法上的嫻熟。
因此,在高三復習過程中,要在抓實基礎(chǔ)知識的學習、基本技能的訓練、提高五大能力的前提下,要有計劃有目的地根據(jù)不同問題的特點,加強思維策略和思維方法的指導和訓練,切實提高思維能力和思維品質(zhì),只有這樣,才能確保在高考中取得優(yōu)異的成績,同時,這更是新課程標準和新的時代給我們中學數(shù)學教學提出的要求。