高中數(shù)學(xué)必修四知識(shí)點(diǎn)·不等式的解法平面向量立體幾何
2019-03-14 16:50:12三好網(wǎng)
不等式的解法:
�。�1)一元二次不等式: 一元二次不等式二次項(xiàng)系數(shù)小于零的,同解變形為二次項(xiàng)系數(shù)大于零;注:要對(duì) 進(jìn)行討論:
�。�2)絕對(duì)值不等式:若 ,則 ; ;
注意:
(1)解有關(guān)絕對(duì)值的問題,考慮去絕對(duì)值,去絕對(duì)值的方法有:
�、艑�(duì)絕對(duì)值內(nèi)的部分按大于、等于、小于零進(jìn)行討論去絕對(duì)值;
(2).通過兩邊平方去絕對(duì)值;需要注意的是不等號(hào)兩邊為非負(fù)值。
(3).含有多個(gè)絕對(duì)值符號(hào)的不等式可用“按零點(diǎn)分區(qū)間討論”的方法來解。
�。�4)分式不等式的解法:通解變形為整式不等式;
�。�5)不等式組的解法:分別求出不等式組中,每個(gè)不等式的解集,然后求其交集,即是這個(gè)不等式組的解集,在求交集中,通常把每個(gè)不等式的解集畫在同一條數(shù)軸上,取它們的公共部分。
�。�6)解含有參數(shù)的不等式:
解含參數(shù)的不等式時(shí),首先應(yīng)注意考察是否需要進(jìn)行分類討論.如果遇到下述情況則一般需要討論:
�、俨坏仁絻啥顺顺粋€(gè)含參數(shù)的式子時(shí),則需討論這個(gè)式子的正、負(fù)、零性.
�、谠谇蠼膺^程中,需要使用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性時(shí),則需對(duì)它們的底數(shù)進(jìn)行討論.
③在解含有字母的一元二次不等式時(shí),需要考慮相應(yīng)的二次函數(shù)的開口方向,對(duì)應(yīng)的一元二次方程根的狀況(有時(shí)要分析△),比較兩個(gè)根的大小,設(shè)根為 (或更多)但含參數(shù),要討論。
平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數(shù)運(yùn)算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規(guī)律: + = + (交換律); +( +c)=( + )+c (結(jié)合律);
3.實(shí)數(shù)與向量的積:實(shí)數(shù) 與向量 的積是一個(gè)向量。
(1)| |=| |·| |;
(2) 當(dāng) a>0時(shí), 與a的方向相同;當(dāng)a<0時(shí), 與a的方向相反;當(dāng) a=0時(shí),a=0.
兩個(gè)向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個(gè)實(shí)數(shù) ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量 ,有且只有一對(duì)實(shí)數(shù) , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設(shè)P1、P2是直線 上兩個(gè)點(diǎn),點(diǎn)P是 上不同于P1、P2的任意一點(diǎn),則存在一個(gè)實(shí)數(shù) 使 = , 叫做點(diǎn)P分有向線段 所成的比。
當(dāng)點(diǎn)P在線段 上時(shí), >0;當(dāng)點(diǎn)P在線段 或 的延長(zhǎng)線上時(shí), <0;
分點(diǎn)坐標(biāo)公式:若 = ; 的坐標(biāo)分別為( ),( ),( );則 ( ≠-1), 中點(diǎn)坐標(biāo)公式: .
5. 向量的數(shù)量積:
(1).向量的夾角:
已知兩個(gè)非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。
�。�2).兩個(gè)向量的數(shù)量積:
已知兩個(gè)非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|c(diǎn)os .
其中|b|c(diǎn)os 稱為向量b在 方向上的投影.
�。�3).向量的數(shù)量積的性質(zhì):
若 =( ),b=( )則e· = ·e=| |c(diǎn)os (e為單位向量);
⊥b ·b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數(shù)量積的運(yùn)算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想與方法:
本章主要樹立數(shù)形轉(zhuǎn)化和結(jié)合的觀點(diǎn),以數(shù)代形,以形觀數(shù),用代數(shù)的運(yùn)算處理幾何問題,特別是處理向量的相關(guān)位置關(guān)系,正確運(yùn)用共線向量和平面向量的基本定理,計(jì)算向量的模、兩點(diǎn)的距離、向量的夾角,判斷兩向量是否垂直等。由于向量是一新的工具,它往往會(huì)與三角函數(shù)、數(shù)列、不等式、解幾等結(jié)合起來進(jìn)行綜合考查,是知識(shí)的交匯點(diǎn)。
立體幾何
1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。
能夠用斜二測(cè)法作圖。
2.空間兩條直線的位置關(guān)系:平行、相交、異面的概念;
會(huì)求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
�、傥恢藐P(guān)系:平行、直線在平面內(nèi)、直線與平面相交。
�、谥本€與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù)。
�、壑本€與平面垂直的證明方法有哪些?
�、苤本€與平面所成的角:關(guān)鍵是找它在平面內(nèi)的射影,范圍是
�、萑咕€定理及其逆定理:每年高考試題都要考查這個(gè)定理. 三垂線定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點(diǎn)到直線的垂線.
4.平面與平面
(1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質(zhì)。
(3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直。
(4)兩平面間的距離問題→點(diǎn)到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
�、俣x法,一般要利用圖形的對(duì)稱性;一般在計(jì)算時(shí)要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計(jì)算時(shí)要解一個(gè)直角三角形。
③射影面積法,一般是二面交的兩個(gè)面只有一個(gè)公共點(diǎn),兩個(gè)面的交線不容易找到時(shí)用此法。