全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高考總復習 > 高考數(shù)學復習方法 > 高三數(shù)學三角函數(shù)考點解析

高三數(shù)學三角函數(shù)考點解析

2019-01-11 19:57:54三好網(wǎng)

  高中數(shù)學三角函數(shù)復習三角函數(shù)知識點考點解析:

  一、見“給角求值”問題,運用“新興”誘導公式

  一步到位轉換到區(qū)間(-90o,90o)的公式.

  1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);

  3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).

  二、見“sinα±cosα”問題,運用三角“八卦圖”

  1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);

  2. sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);

  3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內;

  4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內.

  三、見“知1求5”問題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號看象限”。

  四、見“切割”問題,轉換成“弦”的問題。

  五、“見齊思弦”=>“化弦為一”:已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉化為sin2α+cos2α.

  六、見“正弦值或角的平方差”形式,啟用“平方差”公式:

  1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.

  七、見“sinα±cosα與sinαcosα”問題,起用平方法則:

  (sinα±cosα)2=1±2sinαcosα=1±sin2α,故

  1.若sinα+cosα=t,(且t2≤2),則2sinαcosα=t2-1=sin2α;

  2.若sinα-cosα=t,(且t2≤2),則2sinαcosα=1-t2=sin2α.

  八、見“tanα+tanβ與tanαtanβ”問題,啟用變形公式:

  tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???

  九、見三角函數(shù)“對稱”問題,啟用圖象特征代數(shù)關系:(A≠0)

  1.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關于過最值點且平行于y軸的直線分別成軸對稱;

  2.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關于其中間零點分別成中心對稱;

  3.同樣,利用圖象也可以得到函數(shù)y=Atan(wx+φ)和函數(shù)y=Acot(wx+φ)的對稱性質。

  十、見“求最值、值域”問題,啟用有界性,或者輔助角公式:

  1.|sinx|≤1,|cosx|≤1;2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);

  3.asinx+bcosx=c有解的充要條件是a2+b2≥c2.

  十一、見“高次”,用降冪,見“復角”,用轉化.

  1.cos2x=1-2sin2x=2cos2x-1.

  2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等。

[標簽:高考指導 復習指導]

分享:

高考院校庫(挑大學·選專業(yè),一步到位!)

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數(shù)線

專業(yè)分數(shù)線

  • 歡迎掃描二維碼
    關注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費領
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關注高考網(wǎng)官方服務號