全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高考總復(fù)習(xí) > 高考數(shù)學(xué)復(fù)習(xí)方法 > 2019高考數(shù)學(xué)最容易失分的知識點

2019高考數(shù)學(xué)最容易失分的知識點

2018-09-18 15:23:02高中生學(xué)習(xí)方法

  數(shù)學(xué)是一切科學(xué)的基礎(chǔ),方法君今為大家匯總了歷年高考數(shù)學(xué)最易失分知識點,希望可以解決同學(xué)們所遇到的相關(guān)問題。

  01.遺忘空集致誤

  由于空集是任何非空集合的真子集,因此B=?時也滿足B?A.解含有參數(shù)的集合問題時,要特別注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況。

  02.忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。

  03.混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

  04.充分條件、必要條件顛倒致誤

  對于兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件.解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充分條件和必要條件的概念作出準確的判斷。

  05.“或”“且”“非”理解不準致誤

  命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假).求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應(yīng)起來進行理解,通過集合的運算求解。

  06.函數(shù)的單調(diào)區(qū)間理解不準致誤

  在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法.對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  07.判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。

  08.函數(shù)零點定理使用不當(dāng)致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點.函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。

  09.導(dǎo)數(shù)的幾何意義不明致誤

  函數(shù)在一點處的導(dǎo)數(shù)值是函數(shù)圖像在該點處的切線的斜率.但在許多問題中,往往是要解決過函數(shù)圖像外的一點向函數(shù)圖像上引切線的問題,解決這類問題的基本思想是設(shè)出切點坐標(biāo),根據(jù)導(dǎo)數(shù)的幾何意義寫出切線方程.然后根據(jù)題目中給出的其他條件列方程(組)求解.因此解題中要分清是“在某點處的切線”,還是“過某點的切線”。

  10.導(dǎo)數(shù)與極值關(guān)系不清致誤

  f′(x0)=0只是可導(dǎo)函數(shù)f(x)在x0處取得極值的必要條件,即必須有這個條件,但只有這個條件還不夠,還要考慮是否滿足f′(x)在x0兩側(cè)異號.另外,已知極值點求參數(shù)時要進行檢驗。

  11.三角函數(shù)的單調(diào)性判斷致誤

  對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sin x的單調(diào)性相反,就不能再按照函數(shù)y=sin x的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決.對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進行判斷。

  12.圖像變換方向把握不準致誤

  函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的圖像可看作由下面的方法得到:(1)把正弦曲線上的所有點向左(當(dāng)φ>0時)或向右(當(dāng)φ<0時)平行移動|φ|個單位長度;(2)再把所得各點橫坐標(biāo)縮短(當(dāng)ω>1時)或伸長(當(dāng)0<ω<1時)到原來的1ω倍(縱坐標(biāo)不變);(3)再把所得各點的縱坐標(biāo)伸長(當(dāng)A>1時)或縮短(當(dāng)0<A<1時)到原來的A倍(橫坐標(biāo)不變).即先作相位變換,再作周期變換,最后作振幅變換.若先作周期變換,再作相位變換,應(yīng)左(右)平移|φ|ω個單位.另外注意根據(jù)φ的符號判定平移的方向。

  13.忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線.它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視.

  14.向量夾角范圍不清致誤

  解題時要全面考慮問題.?dāng)?shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

  15.忽視斜率不存在致誤

  在解決兩直線平行的相關(guān)問題時,若利用l1∥l2?k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在.如果忽略k1,k2不存在的情況,就會導(dǎo)致錯解.這類問題也可以利用如下的結(jié)論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數(shù)值后代入檢驗,看看兩條直線是不是重合從而確定問題的答案.對于解決兩直線垂直的相關(guān)問題時也有類似的情況.利用l1⊥l2?k1·k2=-1時,要注意其前提條件是k1與k2必須同時存在.利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論。

  16.忽視零截距致誤

  解決有關(guān)直線的截距問題時應(yīng)注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式.因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況。

  17.忽視圓錐曲線定義中條件致誤

  利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|.如果不滿足第一個條件,動點到兩定點的距離之差為常數(shù),而不是差的絕對值為常數(shù),那么其軌跡只能是雙曲線的一支。

  18.誤判直線與圓錐曲線位置關(guān)系

  過定點的直線與雙曲線的位置關(guān)系問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項系數(shù)不為零,當(dāng)二次項系數(shù)為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多只有一個交點;二是利用數(shù)形結(jié)合的思想,畫出圖形,根據(jù)圖形判斷直線和雙曲線各種位置關(guān)系.在直線與圓錐曲線的位置關(guān)系中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性。

  19.兩個計數(shù)原理不清致誤

  分步加法計數(shù)原理與分類乘法計數(shù)原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數(shù)對象的本質(zhì)特征與形成過程,按照事件的結(jié)果來分類,按照事件的發(fā)生過程來分步,然后應(yīng)用兩個基本原理解決.對于較復(fù)雜的問題既要用到分類加法計數(shù)原理,又要用到分步乘法計數(shù)原理,一般是先分類,每一類中再分步,注意分類、分步時要不重復(fù)、不遺漏,對于“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。

  20.排列、組合不分致誤

  為了簡化問題和表達方便,解題時應(yīng)將具有實際意義的排列組合問題符號化、數(shù)學(xué)化,建立適當(dāng)?shù)哪P停賾?yīng)用相關(guān)知識解決.建立模型的關(guān)鍵是判斷所求問題是排列問題還是組合問題,其依據(jù)主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題。

  21.混淆項系數(shù)與二項式系數(shù)致誤

  在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,…,n項的二項式系數(shù)分別是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而項的系數(shù)是二項式系數(shù)與其他數(shù)字因數(shù)的積。

  22.循環(huán)結(jié)束判斷不準致誤

  控制循環(huán)結(jié)構(gòu)的是計數(shù)變量和累加變量的變化規(guī)律以及循環(huán)結(jié)束的條件.在解答這類題目時首先要弄清楚這兩個變量的變化規(guī)律,其次要看清楚循環(huán)結(jié)束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結(jié)束還是不滿足條件時結(jié)束。

  23.條件結(jié)構(gòu)對條件判斷不準致誤

  條件結(jié)構(gòu)的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重復(fù),在解題時對判斷條件要仔細辨別,看清楚條件和函數(shù)的對應(yīng)關(guān)系,對條件中的數(shù)值不要漏掉也不要重復(fù)了端點值。

  24.復(fù)數(shù)的概念不清致誤

  對于復(fù)數(shù)a+bi(a,b∈R),a叫做實部,b叫做虛部;當(dāng)且僅當(dāng)b=0時,復(fù)數(shù)a+bi(a,b∈R)是實數(shù)a;當(dāng)b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時,z=bi叫做純虛數(shù).解決復(fù)數(shù)概念類試題要仔細區(qū)分以上概念差別,防止出錯.另外,i2=-1是實現(xiàn)實數(shù)與虛數(shù)互化的橋梁,要適時進行轉(zhuǎn)化,解題時極易丟掉“-”而出錯。

[標(biāo)簽:數(shù)學(xué)指導(dǎo) 高考備考]

分享:

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分數(shù)線

專業(yè)分數(shù)線

日期查詢
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費領(lǐng)
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關(guān)注高考網(wǎng)官方服務(wù)號